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Abstract

This paper deals with the development of an improved Roe scheme that is free from the shock instability and still

preserves the accuracy and efficiency of the original Roe�s Flux Difference Splitting (FDS). Roe�s FDS is known to

possess good accuracy but to suffer from the shock instability, such as the carbuncle phenomenon. As the first step

towards a shock-stable scheme, Roe�s FDS is compared with the HLLE scheme to identify the source of the shock

instability. Through a linear perturbation analysis on the odd–even decoupling problem, damping characteristic is

examined and Mach number-based functions f and g are introduced to balance damping and feeding rates, which leads

to a shock-stable Roe scheme. In order to satisfy the conservation of total enthalpy, which is crucial in predicting

surface heat transfer rate in high-speed steady flows, an analysis of dissipation mechanism in the energy equation is

carried out to find out the error source and to make the proposed scheme preserve total enthalpy. By modifying the

maximum-minimum wave speed, the problem of expansion shock and numerical instability in the expansion region is

also remedied without sacrificing the exact capturing of contact discontinuity. Various numerical tests concerned with

the shock instability are performed to validate the robustness of the proposed scheme. Then, viscous flow test cases

ranging from transonic to hypersonic regime are calculated to demonstrate the accuracy, robustness, and other essential

features of the proposed scheme.

� 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

It is essential that a numerical representation of inviscid fluxes, namely a numerical flux function, should

guarantee the high level of accuracy, efficiency, and robustness in computational fluid dynamics (CFD). In

the last three decades, numerous numerical flux functions have been developed and much progress has been
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achieved. The Flux Difference Splitting (FDS) framework is one of the most successful groups among the

various approaches to design numerical schemes and is widely used and studied. FDS schemes are generally

based on the idea due to Godunov [1] and the Riemann problem is utilized locally. Godunov showed that

after preparing piecewise constant initial data from cell-averaged flow values, numerical flux at a cell in-

terface can be calculated through the exact solution of the Riemann problem. Although this strategy

provides a way to obtain a good shock-capturing scheme, the Riemann problem is highly non-linear and

has no closed form solution. In order to overcome this deficiency, many have tried to simplify the step of

numerical flux calculation, which leads to the family of Godunov-type schemes or approximate Riemann
solvers, such as Roe�s FDS [2], HLLEM [3], Osher�s FDS [4], and etc. These FDS schemes can capture

contact discontinuity accurately and give good resolution for boundary layer in viscous flow calculation.

Despite these advantages and the good shock-capturing property, some disastrous failings are also found in

certain problems. This pathological behavior, usually represented as the �carbuncle phenomenon�, was first
observed by Peery and Imlay [5] for blunt body computations with Roe�s FDS. The carbuncle phenomenon
refers to a protuberant shock profile obtained when a supersonic flow over a blunt body is calculated. Quirk

[6] reported that approximate Riemann solvers generally suffer from such failings. After the carbuncle

phenomenon was observed, many attempts were made to unveil the cause and to cure these failings. The
attempts to cure the shock instability can be generally categorized into two groups. One is to use an al-

ternative dissipative scheme in a hybrid manner and the other to employ an entropy fix.

Quirk [6] noticed that some schemes possessing the property of the good capturing of contact discon-

tinuity show carbuncle phenomena while others free from carbuncle phenomena cannot capture contact

discontinuity accurately. Thus, it is suggested that a dissipative scheme, such as HLLE, should be used in

shock region while a less dissipative scheme, such as Roe�s FDS, should be used elsewhere. In order to flag

the cell interface where a dissipative scheme is needed, a pressure gradient sensor is used. Wada and Liou

[7], by the same philosophy, suggest a similar flagging procedure but they use a sonic point. For a less
dissipative scheme, AUSMDV is used and H€aanel�s FVS is used for a dissipative scheme. This cure turns out
to be very efficient, as shown by the results reported in [6,7]. However, this approach always needs a proper

counterpart that complements defects of the original flux function, and the selection of a proper numerical

scheme itself is a critical problem. An inadequate counterpart may contaminate the accuracy of numerical

solutions, especially in cases of high-speed flows.

An entropy fix to the linear wave field is a method to limit the minimum value of the wave speed, which

is equivalent to the addition of extra numerical dissipation to damp out spurious oscillation. A fix on the

linear wave field, however, is not a real entropy fix since only the non-linear waves should be fixed for the
entropy condition to be satisfied. Peery and Imlay [5] propose an isotropic function for an entropy fix, and

Lin [8] designs an anisotropic correction function using a pressure gradient sensor. Although this approach

may successfully cure the carbuncle phenomenon, its performance always depends on the location and/or

the amount of numerical dissipation added. Improper entropy fix may easily broaden shock wave profile

and/or deteriorate boundary layer resolution. Thus, the development of a proper sensor that determines the

location and the amount of numerical dissipation is crucial.

The two approaches to cure the shock instability problem, i.e., the use of dissipative numerical schemes

and the employment of an entropy fix, are fundamentally the same in the sense that extra numerical dis-
sipation is added to the original scheme in a way or another, and both need a detection procedure which

usually involves a tuning coefficient.

So far, it is generally believed that a scheme that can capture contact discontinuity exactly, i.e., a scheme

that has vanishing dissipation in stationary contact discontinuity, cannot avoid the shock instability, and

the only way to prevent it is to add enough dissipation to damp out oscillation. However, Liou [9] observes

that all the tested numerical functions that suffer from the shock instability have a term depending on

pressure difference in the numerical mass flux while those free from the shock instability are independent of

pressure difference in the numerical mass flux. Based on the numerical analysis and experiment, he suggests
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the following conjecture: �The condition DðP Þ 6¼ 0; 8M , in the mass flux is necessary for a scheme to develop, as

t increases, the shock instability as manifested by the odd–even decoupling and carbuncle phenomena. On the

other hand, the condition DðPÞ ¼ 0; 8M , is sufficient for a scheme to prevent the shock instability from oc-

curring.� Here, DðPÞ stands for the dissipation term depending on pressure difference. This result indicates

that it is possible to devise a FDS flux function free from the shock instability with vanishing dissipation in

capturing stationary contact discontinuity. Xu [10] explains the shock instability using the Bernoulli

equation and a convergent–divergent nozzle concept. According to his explanation, vanishing dissipation in

the direction parallel to the shock and the contribution of pressure fluctuation to the numerical mass flux
cause the shock instability. The analysis in [10] is in a qualitative agreement with Liou�s conjecture in the

sense that the pressure term in the numerical mass flux triggers the shock instability.

The present study aims at the design of a new Roe-based FDS flux function that is free from shock

instability. Following Liou�s conjecture and Xu�s explanation, we focus on the pressure term in the nu-

merical mass flux of Roe�s FDS. In order to maintain the high level of robustness and accuracy, we impose

that the newly developed flux function should satisfy the following criteria:

• The new flux function should be free from the shock instability without any tunable parameter.

• The new flux function should capture contact discontinuity exactly for the accurate resolution of bound-
ary layer.

• Total enthalpy should be conserved for the accurate prediction of surface heat transfer rate in high-speed

steady flows.

• Robustness in the expansion region should be substantially improved and entropy-violating expansion

shock should be removed.

The present paper is organized as follows. After introduction, a list of the shock instability is briefly re-

viewed with some examples in Section 2. In Sections 3 and 4, we present the analysis procedure of Roe�s flux
function and propose Roe with Mach number-based function (RoeM) schemes. In Section 5, we present
extensive numerical results and discuss properties of the schemes proposed in Section 4. In order to

demonstrate various properties of the flux functions, we apply the proposed schemes to steady and un-

steady problems. Finally, concluding remarks are given in Section 6.

2. Shock instability

In this section, we present the results of numerical experiments carried out using Roe�s FDS on three
examples. These tests, suggested by Quirk [6], include steady and unsteady cases and give some insight on

the shock instability.

2.1. Quirk’s test (odd–even decoupling)

Quirk [6] reports a tendency to occur odd–even decoupling along the planar shock that is aligned with

the mesh in the middle of high-resolution simulation. In order to judge whether a scheme is shock-stable or

not, he presents a simplified test case named �odd–even decoupling,� a planar moving shock in a duct where
a centerline grid is perturbed. It is considered that odd–even decoupling is connected with the carbuncle

phenomenon, and any scheme that does not survive Quirk�s test fails the blunt body problem. The com-

putational mesh has a nominally uniform grid of 20� 800 cells with unit spacing and the centerline of

which is perturbed in the following manner:

Yi;j;mid ¼
Yj;mid þ 10�4; for i even;
Yj;mid � 10�4; for i odd:

�
ð1Þ

344 S. Kim et al. / Journal of Computational Physics 185 (2003) 342–374



This perturbation to the grid centerline promotes odd–even decoupling along the length of the shock.

Compared to the perturbation used in [6] (Dy ¼ 	10�6), it is increased here to amplify odd–even decoupling
phenomenon. The shock wave is traveling with a Mach number of Ms ¼ 6.0. The computational result with

Roe�s FDS is presented in Fig. 1, which shows density contour after 300 iterations with CFL number 0.5.
As the shock propagates downstream, perturbation grows from the center where the grid is perturbed, and

eventually the planar shock breaks down.

2.2. The kinked Mach stem

Another kind of shock instability behavior is observed when a plane shock wave is reflected from a ramp

to form a Double-Mach Reflection (DMR). The principal Mach stem is so severely kinked that an un-

physical triple point appears. This pathological behavior, named �the kinked Mach stem�, is also unsteady

phenomenon like �odd–even decoupling� case. This test consists of a 30� ramp and a moving shock with

Ms ¼ 5:5. In Fig. 2(a), density contour with Roe�s FDS on a 400� 40 mesh is shown. The results are

obtained with the first order spatial accuracy. First, the incident shock wave breaks down as in the case of

�odd–even decoupling�, where the mesh is perfectly aligned with the shock wave. Also, the Mach stem

protrudes like a beak at the wall, though the mesh is not aligned with the Mach stem. It is known that the
shock instability is more likely to appear as the number of grid point increases. Figure 2(b) shows density

contour on a 200� 100 mesh. In this case, the incident shock wave does not show any shock instability

behavior, while the Mach stem is still kinked.

2.3. The Carbuncle phenomenon (supersonic flow around a blunt body)

The carbuncle phenomenon was first reported by Peery and Imlay [5] for a flow around a blunt

body. For steady state blunt body flow calculation, Godunov-type scheme admits a spurious solution in

Fig. 1. Quirk�s test: odd–even grid perturbation problem with a moving shock of Ms ¼ 6:0.

Fig. 2. Density contours of double Mach reflecting using Roe�s FDS with first-order spatial accuracy.
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which a protuberance grows ahead of the bow shock along the stagnation streamline. Figure 3 shows

the pressure contour and the distribution of flow quantities along the stagnation line of a half-cylinder.

Unsymmetrical flow behavior and the protuberance of the bow shock can be clearly seen. The free

stream Mach number is 8.0, the mesh size is 65� 113, and Roe�s FDS is used with the first order

accuracy.

2.4. Relation between the shock instability and pressure contribution

After the carbuncle phenomenon was first reported, many have found cases of the shock instability and

have tried to save shock-capturing schemes from the disastrous phenomenon. As a result, some important

characteristics were observed. First, it is noticed that the shock instability does not occur in one-dimen-

sional calculation, i.e., shock instability is a multi-dimensional phenomenon. Also, it is found that dissi-
pative schemes that cannot capture contact discontinuity, such as HLLE and van Leer�s Flux Vector

Splitting (FVS), are free from the shock instability. The instability is more likely to appear when the shock

is aligned with the mesh. Roe�s scheme or any other Godunov-type scheme that has the capability of

capturing contact discontinuity exactly provides no dissipation in the direction parallel to the shock. On the

other hand, schemes that cannot capture the contact discontinuity feed extra dissipation parallel to the

shock and can avoid the disaster. Thus, many think that the addition of some dissipation may be the only

recipe even if it has the potential to compromise the accuracy and/or the robustness of a solution. This idea

is also supported by mathematical analysis. Through a linear analysis, Sanders et al. [11] argue that the
shock instability is the result of inadequate crossflow dissipation provided by pure upwind schemes, and

propose crossflow dissipation in order to eliminate the instability. Through a linear stability analysis,

Gressier et al. [12,13] suggest that the exact capturing of contact discontinuity and strict stability cannot be

simultaneously satisfied in any central scheme with matrix dissipation or any upwind scheme. And recently,

through the odd–even decoupling analysis with manifold numerical schemes, Pandolfi and D�Ambrosio [14]
maintain that the numerical schemes, which resolve contact discontinuity exactly, are not free from the

shock instability.

Fig. 3. Carbuncle phenomenon. Supersonic (M1 ¼ 8:0) half-cylinder problem: pressure contour and shock profiles along the stag-

nation streamline.
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However, some have paid attention to the role of the pressure term in the numerical mass flux in order to

find the source of the shock instability. Comparing Roe�s FDS with HLLE, Quirk [6] points out that if any

scheme feeds the perturbation of pressure field to that of the density field, it will be afflicted by the shock

instability. Recently, Liou [9] and Xu [10] presented qualitatively similar analyses. Their results agree with

each other in the sense that the pressure term in the numerical mass flux plays a key role in invoking the

shock instability. Xu explains that if pressure difference exists along the shock that is perfectly aligned with

the mesh, the fluid will be pushed to the low-pressure region, where the flow velocity will be accelerated.

This process makes the pressure in the low-pressure region even lower, as in the convergent nozzle. Since a
Riemann-solver such as Roe�s FDS add no dissipation to the contact discontinuity region and thus have no
built-in mechanism to prevent this process, it will continue until the whole solution breaks down. Liou

examines several numerical flux schemes and analyzes more rigorously the structure of numerical dissi-

pation, finally reaching the conjecture that a non-zero pressure contribution in the numerical mass flux for

all Mach numbers is a necessary condition for a scheme to develop the shock instability.

3. Cure for the shock instability

In this section, we present the cure for the shock instability of Roe�s FDS with the damping and feeding

rate control of density and pressure perturbation using the Mach number-based functions f and g.

3.1. Roe’s flux function

The governing equations of inviscid flow in two-dimension are as follows:

oQ

ot
þ oE

ox
þ oG

oy
¼ 0; ð2aÞ

where the state vector and flux vectors are

Q ¼

q
qu
qv
qet

0
BB@

1
CCA; E ¼

qu
qu2 þ p

quv
quH

0
BB@

1
CCA; G ¼

qv
quv

qv2 þ p
qvH

0
BB@

1
CCA: ð2bÞ

The equation of state has the form as follows:

p ¼ ðc � 1Þqe ¼ ðc � 1Þq et

�
� 1

2
ðu2 þ v2Þ

	
; ð3Þ

where the specific heat ratio c is 1.4 for a perfect gas.
The numerical flux of Roe�s FDS [2] at a cell interface is written as follows:

Fjþð1=2Þ ¼
1

2
Fj

h
þ Fjþ1 � jÂAjDQ

i
; ð4aÞ

Fj ¼

qU
quU þ nxp
qvU þ nyp

qUH

0
BB@

1
CCA

j

; ð4bÞ
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jÂAjDQ ¼ jDF̂Fj1 þ jDF̂Fj2 þ jDF̂Fj3 þ jDF̂Fj4: ð4cÞ

U indicates contravariant velocity and nx, ny are unit normal vector components at the cell interface.^means
Roe-averaged value at the cell interface, which represents flow interaction between the j and the j þ 1 cell.

In Eq. (4a), the last term in the RHS is a matrix dissipation that characterizes Roe�s FDS, which is

represented as follows:

jDF̂Fj1 ¼ jÛU j Dq

�
� Dp

ĉc2

	 1

ûu

v̂v
ûu2þv̂v2

2

0
BBB@

1
CCCA; jDF̂Fj2 ¼ jÛU jq̂qðnyDu � nxDvÞ

0

ny

�nx

ûuny � v̂vnx

0
BBB@

1
CCCA;

jDF̂Fj3;4 ¼ jÛU 	 ĉcj Dp 	 q̂qĉcDU
2ĉc2

 ! 1

ûu 	 nxĉc

v̂v 	 nyĉc

ĤH 	 ĉcÛU

0
BBB@

1
CCCA:

ð5Þ

ĉc is the speed of sound based on Roe-averaged values, jDF̂Fj1 and jDF̂Fj2 are linear wave components that
represent contact discontinuity, and jDF̂Fj3 and jDF̂Fj4 are non-linear wave components for shock waves or

expansion waves. We will focus on the Dp in all linear and non-linear wave components, which is thought to
be the source of the shock instability. In order to analyze the flux function readily, we rearrange it into

another form.
In subsonic region,

Fjþð1=2Þ ¼
1

2
Fj

h
þ Fjþ1 � jÂAjDQ

i
¼ 1

2
Fj

h
þ Fjþ1 � M̂MÂADQþ M̂MÂA

�
� jÂAj

�
DQ
i

¼ 1

2
Fj

h
þ Fjþ1 � M̂MðFjþ1 � FjÞ þ ðM̂MÂA� jÂAjÞDQ

i
: ð6aÞ

The eigenvalues of the matrix M̂MÂA� jÂAj are

k1;2 ¼ ĉcðM̂M2 � jM̂M jÞ ¼ ĉcðM̂M2 � 1Þ þ ĉcð1� jM̂M jÞ and k3;4 ¼ ĉcðM̂M2 � 1Þ: ð6bÞ

In supersonic region,

Fjþð1=2Þ ¼ Fj if M̂M > 1 and Fjþð1=2Þ ¼ Fjþ1 if M̂M < �1: ð6cÞ

Thus, Roe�s FDS can be cast into the form as follows:

Fjþð1=2Þ ¼
1

2
Fj

h
þ Fjþ1 � ~MMðFjþ1 � FjÞ þ ĉcð ~MM2 � 1ÞDQþ ĉcð1� j ~MM jÞBDQ

i
; ð7aÞ

where

~MM ¼ signðM̂MÞ �minð1:; jM̂M jÞ; ð7bÞ

BDQ ¼ Dq

�
� Dp

ĉc2

	 1
ûu
v̂v

ûu2þv̂v2

2

0
BB@

1
CCAþ q̂q

0
Du � nxDU
Dv � nyDU

ûuDu þ v̂vDv � ÛUDU

0
BB@

1
CCA; ð7cÞ

and M̂M is the normal Mach number computed with the contravariant velocity and M̂M ¼ ÛU=ĉc.
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In the above expression, it is noticed that Dp exists only in the last term BDQ, which can be treated as a

kind of anti-diffusion that enables Roe�s FDS to capture contact discontinuity exactly but triggers the shock
instability. This will be more obvious from the following comparison of Roe�s FDS with HLLE scheme.

3.2. Cure for the shock instability

It is well known that HLLE scheme cannot capture contact discontinuity but is free from the shock

instability. HLLE is also a Godunov-type solver but flow states separated by contact discontinuity are

averaged in computing the numerical flux, which precludes the exact capturing of contact discontinuity.

Except for the ignorance of contact discontinuity and the selection of wave speeds, however, there is no

fundamental difference between HLLE and Roe�s scheme. Thus, it will be beneficial to compare Roe�s FDS
with HLLE scheme. Similar to the form of Eq. (7a), the numerical flux of HLLE scheme can be rewritten as
follows:

Fjþð1=2Þ ¼
1

2
Fj

h
þ Fjþ1 � ~MMðFjþ1 � FjÞ þ ĉcð ~MM2 � 1ÞDQ

i
; ð8Þ

where Roe-averaged values are used for the non-linear wave speeds and ~MM is defined as Eq. (7b). Equation

(8) is identical to Eq. (7a) except the last extra term BDQ in Eq. 7a, which enables Roe�s FDS to capture

contact discontinuity and triggers the shock instability.

In order to see the difference more concretely, we examine the structure of the numerical mass flux as

follows:

F
ðqÞ
jþð1=2Þ ¼

1

2
ðqUÞjþ1
h

þ ðqUÞj
i
� 1

2
DðqÞDq

�
þ DðUÞDU þ DðpÞ

ĉc2
Dp
�
; ð9Þ

where dissipation term is expanded in terms of primitive variables. Then, dissipation coefficients DðqÞ and
DðpÞ for Roe�s FDS, HLLE, and Roe�s FDS with an entropy fix to linear waves can be expressed as follows.

Roe�s FDS:

DðqÞ
Roe ¼ ĉcjM̂M j; DðpÞ

Roe ¼ ĉcð1� jM̂M jÞ: ð10aÞ

HLLE scheme with Roe-averaged wave speeds:

DðqÞ
HLLE ¼ ĉc; DðpÞ

HLLE ¼ 0: ð10bÞ

Roe�s FDS with an entropy fix to linear waves:

DðqÞ
fix ¼ maxðĉcjM̂M j; dÞ; DðpÞ

fix ¼ ĉcð1� jM̂M jÞ; ð10cÞ

where the determination of d depends on the method adopted.
From Eqs. (10a)–(10c) it can be seen that HLLE scheme has no pressure contribution to the numerical

mass flux. This is in agreement with Liou�s conjecture that the condition, DðpÞ ¼ 0; for 8M , is sufficient for

a scheme to prevent the shock instability from occurring. It is noted that Roe�s FDS with an entropy fix is

also free from the shock instability but still has a pressure term in the numerical mass flux. Dissipation

coefficients of Roe�s FDS and Roe�s FDS with an entropy fix, as functions of the Mach number, are shown

in Fig. 4. It is noticed that as the Mach number goes to zero, the dissipation coefficient of density decreases

to zero while the coefficient of pressure increases to unit. When an entropy fix is applied, the coefficient of

density decreases as the Mach number goes to zero but remains at a finite value, which damps perturbation
induced by pressure term.
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By solving the odd–even decoupling problem in [6], we can examine in detail how Roe�s FDS, HLLE,
and Roe�s FDS with an entropy fix evolve sawtooth-type data and whether the perturbation grows or

decays. We assume that the 2-D computational mesh is uniform and the discrete solution at time tn is given
by

qn
j ¼ q þ q̂qn; pn

j ¼ p þ p̂pn; un
j ¼ u0; vn

j ¼ v0; ð11aÞ

if j is even, and by

qn
j ¼ q � q̂qn; pn

j ¼ p � p̂pn; un
j ¼ u0; vn

j ¼ v0; ð11bÞ

if j is odd. Here, q̂qn and p̂pn are the amplitudes of sawtooth profiles for density and pressure fields, re-

spectively. The amplitude at n þ 1 time level can be expressed as

q̂qnþ1 ¼ 1

�
� 2vy

DðqÞ

ĉc

	
q̂qn � 2vy

ĉc2
DðpÞ

ĉc
p̂pn; ð12aÞ

p̂pnþ1 ¼ 1
�

� 2vy

�
p̂pn þ 2vy

c � 1

ĉc2
ûu2 þ v̂v2

2

DðpÞ þ DðqÞ

ĉc

�"
� 1

	
� v̂v2

#
p̂pn; ð12bÞ

where

vy ¼
cDt
Dy

:

When the velocity v0 is equal to zero, i.e., the normal Mach number is zero, the amplitude at n þ 1 time level

is expressed as follows:

For Roe�s FDS:

q̂qnþ1 ¼ q̂qn � 2vy

ĉc2
p̂pn; ð13aÞ

Fig. 4. Dissipation coefficients of density and pressure.
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p̂pnþ1 ¼ ð1� 2vyÞp̂pn: ð13bÞ

For HLLE:

q̂qnþ1 ¼ ð1� 2vyÞq̂qn; ð14aÞ

p̂pnþ1 ¼ ð1� 2vyÞp̂pn: ð14bÞ

For Roe�s FDS with entropy fix:

q̂qnþ1 ¼ 1

�
� 2vy

d
ĉc

	
q̂qn � 2vy

ĉc2
p̂pn; ð15aÞ

p̂pnþ1 ¼ 1
�

� 2vy

�
p̂pn þ 2vy

c � 1

ĉc2
ûu2

2

d
ĉc

� 	" #
p̂pn: ð15bÞ

If there exists pressure perturbation, flow is driven by the pressure difference. In this process, pressure

perturbation is damped, and mass is convected to the cell where pressure is low. As a result, pressure

perturbation is turned into density perturbation. In the flow physics governed by the Euler equations,

pressure difference has a role to drive flow but density and/or temperature difference is simply admitted as a

solution because there is no physical diffusion mechanism.
Equations (13a) and (13b) show that Roe�s FDS damps pressure perturbation but promotes density

perturbation. Thus, if there exists a pressure perturbation source, then this will act as a density perturbation

source after all. Xu [10] explains the relation between the shock instability and a pressure perturbation

source as follows. If pressure difference exists along the shock that is perfectly aligned with the mesh, the

fluid will be pushed to the low-pressure region, where the flow velocity will be accelerated. This process

makes the pressure in the low-pressure region even lower, as in the convergent nozzle. After all, this will

corrupt whole numerical solutions. Equations (14a) and (14b) show that HLLE scheme decouples the

pressure field and density field. Pressure perturbation is damped but it does not affect the density field. And
density perturbation is damped on its own mechanism. Equations (15a) and (15b), however, indicate that

Roe�s FDS with an entropy fix is in the intermediate state between Roe�s FDS and HLLE scheme. Pressure

perturbation convects the flow to the region where pressure is low, and this promotes density perturbation.

But entropy fix has the role to damp density perturbation even when the normal Mach number is zero and

to prevent this process from corrupting the whole numerical solution.

Thus, it may be interpreted that Liou�s conjecture and entropy fix are all concerned about the balance of
dissipations between pressure and density terms. The former requires DðpÞ to be zero, which results in the

exclusion of pressure contribution to the numerical mass flux, while the latter restricts the minimum value
of DðqÞ to counteract pressure contribution with the dissipation due to density difference, especially when

the normal Mach number goes to zero.

It is known that the shock instability is more likely to appear when the shock is aligned with the mesh. If

the shock is oblique, however, the shock instability is not to occur even though the shock is perfectly

aligned with the mesh. When the velocity v0 is not zero, i.e., the normal Mach number is not zero, the

amplitude at n þ 1 time level is expressed as follows:

For Roe�s FDS:

q̂qnþ1 ¼ 1
�

� 2vy jM̂M j
�
q̂qn � 2vy

ĉc2
1
�

� jM̂M j
�
p̂pn; ð16aÞ
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p̂pnþ1 ¼ 1
�

� 2vy

�
p̂pn � 2vyðc � 1ÞM̂M2p̂pn: ð16bÞ

In this case, pressure field still perturbs density field and a pressure perturbation source acts as a density
perturbation source. But the transverse velocity acts as a numerical diffusion and damps the density per-

turbation. This diffusion mechanism results from the computational mesh with a finite size. After numerical

flux is calculated and the fluid with a different density is convected, the fluid in the computational mesh is

averaged, i.e., diffused to acquire mesh-averaged property. Thus, when the normal Mach number is not

zero, density field has its own damping mechanism.

We calculate Quirk�s test with a slightly different initial condition using Roe�s FDS. Every condition is

identical to Quirk�s test in Section 2.1, but the transverse velocity component, i.e., the normal Mach number

has the value of M̂M � 0:15 in terms of Roe-averaged value at the cell interface where the shock exists, and
simple extrapolation is applied for boundary condition. Figure 5 shows density contour after 3400 itera-

tions. It is observed that there is no symptom of the shock instability. When the transverse velocity exists,

Eq. (16a) shows density field has its own damping mechanism. Thus, �DðpÞ ¼ 0; for 8M � is considered too

much severe as a restriction. Moreover, if DðpÞ ¼ 0 is always zero, the scheme that can capture contact

discontinuity may have no mechanism to prevent pressure oscillation [15].

In order to balance the contribution of pressure to the numerical mass flux with density dissipation, DðpÞ

is modified as follows:

DðpÞ
i;jþ1=2 ¼ ĉcf ð1� jM̂M jÞ; ð17aÞ

f ¼ 1 ûu2 þ v̂v2 ¼ 0;
jM̂M jh elsewhere;

(
ð17bÞ

h ¼ 1�min Pi;jþð1=2Þ; Pi�ð1=2Þ;j; Piþð1=2Þ;j; Pi�ð1=2Þ;jþ1; Piþð1=2Þ;jþ1
� �

; ð17cÞ

Pi;jþð1=2Þ ¼ min
pi;j

pi;jþ1
;
pi;jþ1

pi;j

� 	
: ð17dÞ

Figure 6 shows the computational stencil for the function f. When we calculate the numerical flux at the
j þ 1=2 cell interface, the function h searches for the location where shock discontinuity exists. Since the

shock instability is caused by the pressure perturbation parallel to the shock, the function h examines all the

interfaces. Then the function f controls the pressure contribution according to the magnitude of the normal

Mach number. Figure 7 shows the distribution of dissipative coefficients in the case where h has the value of

1. The function f and DðpÞ become zero when the normal Mach number is zero. It is noted that the dissi-

pative coefficient of pressure is balanced with the dissipative coefficient of density. Since the control

function f is dependent on the pressure ratio, the feeding rate may not be completely balanced with the

damping rate all the time. We examine how Roe�s FDS with the function f evolves sawtooth-type data.

Fig. 5. Odd–even grid perturbation problem with a moving oblique shock of Ms ¼ 6:0.
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For Roe�s FDS with the function f:

q̂qnþ1 ¼ 1
�

� 2vy jM̂M j
�
q̂qn � 2vy

c2
1
�

� jM̂M j
�
f p̂pn; ð18aÞ

p̂pnþ1 ¼ 1
h

� 2vyf f1þ ðc � 1ÞM̂M2g
i
p̂pn: ð18bÞ

When the cell interface velocity is not zero, pressure and density are stable, i.e., density and pressure pertur-

bation decay as time goes on.When the cell interface velocity is zero, pressure and density are neutrally stable,

i.e., no growth and nodecay.However, if pressure difference exists, Roe�s FDSwith the function fwill generate

Fig. 6. A two-dimensional cell interface.

Fig. 7. Dissipation coefficients of pressure and density.
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convective flow, and flow velocity across the cell interface will have the role to damp out perturbed property.

FromEqs. (18a) and (18b), it can beobserved that the rate atwhich density perturbation is dampedout is equal

to the dissipation coefficient of density, and the rate at which pressure field feeds density perturbation is

proportional to the dissipation coefficient of pressure. Thus, the damping rate and the feeding rate can be

controlled by the control of dissipation coefficients. Liou�s conjecture and the above analysis show that the

important is the balance between the damping rate and the feeding rate in density perturbation. The numerical

flux of Roe�s FDS with the function f defined in Eqs. (17a)–(17d) is given by

Fjþð1=2Þ ¼
b1 � Fj � b2 � Fjþ1

b1 � b2
þ b1 � b2

b1 � b2
DQ� b1 � b2

b1 � b2
� 1

1þ jM̂M j
BDQ; ð19aÞ

BDQ ¼ Dq

�
� f

Dp
ĉc2

	 1

ûu
v̂v

ûu2þv̂v2

2

0
BB@

1
CCAþ q̂q

0

Du � nxDU
Dv � nyDU

ûuDu þ v̂vDv � ÛUDU

0
BB@

1
CCA; ð19bÞ

b1 ¼ maxð0; ÛU þ ĉcÞ; b2 ¼ minð0; ÛU � ĉcÞ: ð19cÞ

Equations (19a)–(19c) have the same form as HLLE scheme except for BDQ and the definitions of b1 and b2.
If pressure field is continuously and strongly perturbed, and the damping rate of density field in Eqs.

(18a) and (18b) is not sufficient, such as in high-speed unsteady flow computations, it may not be effective

with the function f only. However, in most numerical tests performed, the function f turns out to be suf-

ficient to prevent the shock instability from occurring. And this confirms that shock instability has a strong

dependence on the pressure contribution to the numerical mass flux. The case, which shows the role of the

function f is not sufficient, is the double Mach reflection problem (see Section 5.2). It should be noted that

AUSM+ scheme shows an unphysical triple point [13] even though it has the property of DðpÞ ¼ 0 for all
Mach numbers. In this case, the damping rate in Eqs. (18a) and (18b) is small compared with the feeding

rate of pressure perturbation generated from the computational mesh. This phenomenon is caused by flow

unsteadiness. In order to cure this situation, a function g, which plays the role of increasing the damping

rate of density field and controlling the perturbation in pressure field, is introduced as follows:

Fjþð1=2Þ ¼
b1 � Fj � b2 � Fjþ1

b1 � b2
þ b1 � b2

b1 � b2
DQ� g

b1 � b2
b1 � b2

� 1

1þ jM̂M j
BDQ; ð20aÞ

g ¼ jM̂M j
1�min

Pj
Pjþ1

;
Pjþ1
Pj

� �
; M̂M 6¼ 0;

1; M̂M ¼ 0:

8<
: ð20bÞ

The function g checks whether the interface is contact discontinuity or not. When there is pressure gradient

and there exists a transverse velocity, the function g increases the magnitude of the transverse velocity, i.e.,

damping rate. By solving the odd–even decoupling problem, we can examine the role of the function g.

For Roe�s FDS with the function f and g:

q̂qnþ1 ¼ ½1� 2vyð1� g þ gjM̂M jÞ�q̂qn � 2vy

c2
ð1� jM̂M jÞf p̂pn; ð21aÞ

p̂pnþ1 ¼ ð1� 2vyf Þqn þ 2vyðc � 1Þf ûu2 þ v̂v2

2ĉc2
ð1

"
� gÞð1� jM̂M jÞ � M̂M2

#
pn: ð21bÞ
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Equations (21a) and (21b) show that the function g increases the transverse velocity according to the

pressure difference, consequently increases the damping rate in density field as the pressure difference grows.

As mentioned before, the function f has the role to control the feeding rate of pressure perturbation in the

density field, especially when the normal Mach number is zero. In the case when pressure field is perturbed

constantly and pressure difference grows in the calculation, the function g increases the damping rate and

controls the growth of pressure perturbation simultaneously. Through this process, the damping rate is

balanced with the feeding rate.

Recently, Pandolfi and D�Ambrosio [14] calculated supersonic blunt body flows and Quirk�s problem
using several upwind schemes in several grid systems, and observed some characteristics of the shock in-

stability. Through these tests and odd–even decoupling analysis, it is shown that Roe�s FDS and AUSM+

exhibit the shock instability but HLL does not, and maintained that those methods that explicitly deal with

the contact surface display clear evidence of the carbuncle phenomenon and when such interaction is barely

taken into account, or even totally ignored, no carbuncle instability occurs. It is clear that the shock in-

stability has a close connection with the dissipation mechanism to capture contact discontinuity exactly.

However, considering the fact that the carbuncle phenomenon is the case where small perturbations grow

and destroy the shock profile, it is still unclear whether the results with AUSM+ in [14] really show the
carbuncle phenomenon or they are just post-shock numerical oscillations which can usually seen in

AUSM+ due to the location of sonic transition point with respect to the cell interface [16,17]. Also, the

rationale for the categorization of light carbuncle prone schemes or carbuncle-free schemes suggests that

the shock instability is indeed strongly dependent on the pressure term in the numerical mass flux, i.e., the

feeding rate of pressure perturbations. In addition, the result due to Sanders et al. [11] shows that Roe�s
FDS with an entropy fix may still show the shock instability. It indicates that the shock instability is caused

by the interaction between density field and pressure field.

4. Improved Roe scheme

Shock-stable Roe schemes with the Mach number-based functions (RoeM 1 and RoeM 2) that satisfy

the requirements imposed in the Introduction are presented in this Section.

4.1. Total enthalpy conservation

It is known that Roe�s FDS does not preserve total enthalpy in inviscid steady flow. Jameson [18] shows

that the error source of total enthalpy is the discrepancy between the convective terms in the flux vector that

contains qH and the state vector that includes qet in the energy equation. It is also suggested this defect can

be remedied by introducing a modified state vector that contains qH .
Some modification is needed in order for the modified Roe scheme in Section 3 to preserve total en-

thalpy. The dissipation of the continuity equation and energy equation in subsonic region is given by

Dcontinuity

Denergy

� �
¼ DqjM̂M j ĉc

ĉc
2
q̂q2

� �
þ fDq

1
ĉc �

jM̂M j
ĉc

1
ĉc ÛU

2 þ ĤH
ĉc � 1

2ĉc q̂q
2 � 1

2ĉc q̂q
2ðjM̂M j � 1Þ

" #
þ DujM̂M j 0

q̂qĉcûu

� �

þ DvjM̂M j 0

q̂qĉcv̂v

� �
þ DU q̂qM̂M

q̂qĤHM̂M � q̂qĉc2M̂MðjM̂M j � 1Þ

� �
: ð22Þ

In order for numerical flux to preserve total enthalpy, the following condition, which was introduced by
H€aanel [19], should be satisfied:
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Denergy ¼ Dcontinuity � H : ð23Þ

Equation (22) can be rearranged for total enthalpy to appear explicitly as follows:

Dcontinuity

Denergy

� �
¼ ĉcDqjM̂M j 1

ĤH

� �
þ f

1

ĉc

 
� jM̂M j

ĉc

!
Dp

1

ĤH

� �
þ q̂qM̂MDU

1

ĤH

� �
þ q̂qĉcjM̂M j 0

DH

� �

þ fDp
0

ÛU2

ĉc � ĉcjM̂M j

� �
� DU

0

ĉc2q̂qðjM̂M j � 1ÞM̂M

� �
: ð24Þ

Equation (24) shows that the last two terms are the error sources. Although the fourth term on the right-

hand side in Eq. (24) does not satisfy the condition of Eq. (23), DH becomes zero when the total enthalpy is

conserved. Thus, total enthalpy conservation is satisfied by the elimination of the last two terms. Then, the

modified Roe scheme preserving total enthalpy can be expressed as

Fjþð1=2Þ ¼
b1 � Fj � b2 � Fjþ1

b1 � b2
þ b1 � b2

b1 � b2
DQ� � b1 � b2

b1 � b2
� 1

1þ jM̂M j
BDQ; ð25aÞ

DQ� ¼ D

q
qu
qv
qH

0
BB@

1
CCA; BDQ ¼ Dq

�
� f

Dp
ĉc2

	 1

ûu
v̂v
ĤH

0
BB@

1
CCAþ q̂q

0

Du � nxDU
Dv � nyDU

DH

0
BB@

1
CCA; ð25bÞ

b1 ¼ maxð0; ÛU þ ĉcÞ; b2 ¼ minð0; ÛU � ĉcÞ: ð25cÞ

4.2. Expansion shock, instability in the expansion region

Another defect of Roe�s FDS is the appearance of expansion shock. Roe�s FDS does not have a built-in

mechanism to distinguish expansion shock from compression shock. Thus, it admits expansion shock as a

solution that violates the entropy condition. Also, in a highly energetic flow, Roe�s FDS often yields

physically unacceptable values, such as negative density and/or negative temperature. This robustness issue
concerns the positivity condition. In order to overcome this drawback, an entropy fix is widely used. The

entropy fix generally enables Roe�s scheme to resolve expansion fan and helps to improve the robustness.

Einfeldt et al. [3] show that no Godunov-type scheme based on a linearized Riemann solution is positively

conservative, and explain that the reason for the failure of Roe�s FDS is that the numerical signal velocities
of Roe�s Riemann solver underestimate the physical signal velocities. As a remedy, the numerical signal

velocity at a cell interface is computed by incorporating the values at neighboring cells and eigenvalues of

the dissipation matrix are re-defined, which leads to the design of HLLEM scheme. HLLEM does not

require an entropy fix to detect expansion shock and does not suffer from the instability occurred in a highly
energetic flow. The numerical flux of HLLEM can be cast in the following form:

Fjþð1=2Þ ¼
b1 � Fj � b2 � Fjþ1

b1 � b2
þ b1 � b2

b1 � b2
DQ� b1 � b2

b1 � b2
� d Dq

�2664 � Dp
ĉc2

	 1

ûu
v̂v

ûu2þv̂v2

2

0
BB@

1
CCA

þ q̂q

0

Du � nxDU
Dv � nyDU

ûuDu þ v̂vDv � ÛUDU

0
BB@

1
CCA
3
775; ð26aÞ
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d ¼ ĉc
j �UU j þ ĉc

; j �UU j ¼ br þ bl

2

    
    ; ð26bÞ

br ¼ maxðÛU þ ĉc;Ujþ1 þ cjþ1Þ; bl ¼ minðÛU � ĉc;Uj � cjÞ; ð26cÞ

b1 ¼ maxð0; ÛU þ ĉc;Ujþ1 þ cjþ1Þ; b2 ¼ minð0; ÛU � ĉc;Uj � cjÞ: ð26dÞ

In the above expression, d is a positive parameter that controls the amount of anti-diffusion in the linear

field, which corresponds to 1=ð1þ jM̂M jÞ in Eqs. (25a)–(25c). Simply employing the definitions of b1 and b2 in
Eqs. (26a)–(26d) the modified Roe�s FDS of Eqs. (25a)–(25c) can be re-formulated as follows:

Fjþð1=2Þ ¼
b1 � Fj � b2 � Fjþ1

b1 � b2
þ b1 � b2

b1 � b2
DQ� � b1 � b2

b1 � b2
� 1

1þ jM̂M j
BDQ; ð27aÞ

DQ� ¼ D

q
qu
qv
qH

0
BB@

1
CCA; BDQ ¼ Dq

�
� f

Dp
ĉc2

	 1
ûu
v̂v
ĤH

0
BB@

1
CCAþ q̂q

0
Du � nxDU
Dv � nyDU

DH

0
BB@

1
CCA; ð27bÞ

b1 ¼ maxð0; ÛU þ ĉc;Ujþ1 þ cjþ1Þ; b2 ¼ minð0; ÛU � ĉc;Uj � cjÞ: ð27cÞ

When compression shock exists, b1 and b2 allow Eqs. (27a)–(27c) to capture a shock with no intermediate

cell. In case of a non-physical expansion shock, b1 and b2 provides enough numerical dissipation to exclude
the occurrence of the non-admissible discontinuity. The re-defined signal velocities improve substantially

the robustness of the re-formulated scheme, Eqs. (27a)–(27c), in a highly energetic flow, though its posi-
tivity cannot be guaranteed.

4.3. Contact discontinuity

In order to resolve boundary layer accurately in viscous flow, it is essential to capture contact discon-

tinuity exactly. The exact solution for a contact discontinuity moving with speed uc requires that

F continuity

jþð1=2Þ ¼ ð1=2Þ½qjuj þ qjþ1ujþ1 � jucjDq�; i:e:; DðqÞ ¼ jucj: ð28Þ

After some manipulations, the dissipative coefficient of the modified Roe scheme, Eqs. (27a)–(27c), is

obtained as follows.

For uj ¼ ujþ1 ¼ ûu; pj ¼ pjþ1 ¼ p̂p, and qj 6¼ qjþ1

DðpÞ ¼ uc
ða þ bÞðĉcþ ucÞ

ð2ĉcuc

     þ aĉc � auc � bĉc þ buc þ 2abÞ
     ; ð29aÞ

b1 ¼ uc þ a; b2 ¼ u2 � bð06 uc 6 ĉcÞ; ð29bÞ

a ¼ maxðĉc; cjþ1Þ; b ¼ maxðĉc; cjÞ: ð29cÞ

Three cases of contact discontinuity can be considered.
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Case 1: stationary contact discontinuity

uc ¼ 0;DðqÞ ¼ 0: ð30Þ
Case 2: moving contact discontinuity with Tj > Tjþ1

uc 6¼ 0; a ¼ ĉc; b 6¼ ĉc;

DðpÞ ¼ jucj: ð31Þ

Case 3: moving contact discontinuity with Tj < Tjþ1
uc 6¼ 0; a 6¼ ĉc; b ¼ ĉc;

DðpÞ ¼ uc
ða þ ĉcÞðĉc þ ucÞ

ð3ĉcuc

     þ 3aĉc � auc � ĉc2Þ
     6¼ jucj: ð32Þ

From the result of case 3, it can be seen that under certain conditions, the re-formulated scheme of Eqs.

(27a)–(27c) cannot capture a contact discontinuity exactly. This problem can be readily cured by employing

the common speed of sound at a cell interface as follows:

b1 ¼ maxð0; ÛU þ ĉc;Ujþ1 þ ĉcÞ; b2 ¼ minð0; ÛU � ĉc;Uj � ĉcÞ: ð33Þ

From the analyses of Section 3.1 to Section 4.3, the newly formulated Roe-based schemes are proposed as

follows:
RoeM (Roe scheme with Mach number-based function) 1

Fjþð1=2Þ ¼
b1 � Fj � b2 � Fjþ1

b1 � b2
þ b1 � b2

b1 � b2
DQ� � b1 � b2

b1 � b2
� 1

1þ jM̂M j
BDQ; ð34aÞ

DQ� ¼ D

q
qu
qv
qH

0
BB@

1
CCA; BDQ ¼ Dq

�
� f

Dp
ĉc2

	 1

ûu
v̂v
ĤH

0
BB@

1
CCAþ q̂q

0

Du � nxDU
Dv � nyDU

DH

0
BB@

1
CCA; ð34bÞ

b1 ¼ maxð0; ÛU þ ĉc;Ujþ1 þ ĉcÞ; b2 ¼ minð0; ÛU � ĉc;Uj � ĉcÞ: ð34cÞ

RoeM 2

Fjþð1=2Þ ¼
b1 � Fj � b2 � Fjþ1

b1 � b2
þ b1 � b2

b1 � b2
DQ� � g

b1 � b2
b1 � b2

� 1

1þ jM̂M j
BDQ: ð34dÞ

Now, the proposed schemes, RoeM 1 and RoeM 2, with the common speed of sound in signal velocities

satisfy Eq. (28) for all cases and exclude an expansion shock.

For uj ¼ ujþ1 ¼ ûu; pj ¼ pjþ1 ¼ p̂p; qj 6¼ qjþ1,

DðpÞ
RoeM1;2 ¼ jucj: ð35Þ

4.4. Shock discontinuity

In the situation where a shock discontinuity exists, whether the shock is normal or oblique, jÛU j of Eq.
(34c) becomes ĉc and b1 � b2 is equal to zero due to Roe-averaged values. When a shock discontinuity exists
with Uj > Ujþ1 > 0,
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b1 ¼ ÛU þ ĉc; b2 ¼ 0; and Fjþð1=2Þ ¼ Fj:

And, for a shock discontinuity with 0 > Uj > Ujþ1,

b1 ¼ 0; b2 ¼ ÛU � ĉc; and Fjþð1=2Þ ¼ Fjþ1:

Thus, the RoeM schemes have the capability of capturing a shock discontinuity without intermediate cell,

as does Roe�s FDS.

5. Numerical results

In this section, we demonstrate the capabilities of the proposed schemes, RoeM 1 and RoeM 2, which

are designed according to the criteria mentioned in Section 1, with carefully selected test cases. For higher
order extension, the primitive variable interpolation of MUSCL approach is used.

5.1. 1-D test cases

1-D shock tube. This 1-D shock tube test case is similar to the classical Sod test, but with special initial

conditions given as ql ¼ 3; ul ¼ 0:9; pl ¼ 3 and qr ¼ 1; ur ¼ 0:9; pr ¼ 1. Thus, a sonic point exists along

rarefaction waves. Roe�s FDS yields an entropy violating solution and an expansion shock shown as in

Fig. 8. RoeM 1 and RoeM 2 add an optimal amount of dissipation in the expansion region to prevent the

formation of an expansion shock.

1-D contact discontinuity. Results of slowly moving contact discontinuity are shown in Fig. 9. The initial

conditions are ql ¼ 10:0; ul ¼ 0:1125; pl ¼ 1 and pr ¼ 0:125; ur ¼ 0:1125; pr ¼ 1. The iteration count is

500 with the CFL number of 0.85, and the grid points are 100. This condition corresponds to case 3
(Tl < Tr) of Eq. (32). As mentioned before, both RoeM 1 and RoeM 2 satisfy Eq. (35) and give accurate

results, identical to those from Roe�s FDS.

Fig. 8. Sod test case with a sonic point in expansion wave.
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1-D blast wave. This is a highly unsteady problem extensively tested by Woodward and Colella [20]. The
initial conditions are ql ¼ 1:; ul ¼ 0:; el ¼ 2500: ð0:0 < x < 0:1Þ, qm ¼ 1:; um ¼ 0:; em ¼ 0:025 ð0:1 < x <
0:9Þ and qr ¼ 1:; ur ¼ 0:; er ¼ 250: ð0:9 < x < 1:0Þ. Two shocks and three contact discontinuities must be

resolved with an expansion region in the middle at t ¼ 0:038. The results with 1000 cells are shown in Fig.

10. It is evident that noticeable difference is not observed with regard to solution accuracy.

Supersonic expansion test. A supersonic expansion test [3] with the initial conditions of

ql ¼ 1:; ul ¼ �2:; el ¼ 3: and qr ¼ 1:; ur ¼ 2:; er ¼ 3: is solved to see the behavior of the proposed

schemes in highly expansion region. Because Roe�s FDS fails in this problem, we compare the results with

Fig. 9. Slowly moving contact discontinuity with the condition of Tl < Tr.

Fig. 10. Woodward–Colella blasting wave test case.
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that of HLLEM. Although the proposed schemes cannot guarantee positively conservativeness, RoeM 1
and RoeM 2 face no difficulty in near vacuum flows as shown Fig. 11.

5.2. Shock instability

5.2.1. Supersonic flow around a half-cylinder

The Carbuncle phenomenon around a blunt body is illustrated in Section 2.3, and it is demonstrated in

Section 3.2 that Roe�s FDS with the function f does not present a spurious solution. RoeM 1 and RoeM 2

are used to calculate a supersonic inviscid flow around a half-cylinder. The free stream Mach number is 8.0

and the mesh size is 65� 113. This problem has the same initial condition and mesh as the test case in

Section 2.3. Figure 12 shows pressure contour and shock profiles, which show monotonic behavior. There is

Fig. 11. Supersonic expansion test case.
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no symptom of the carbuncle phenomenon. Figure 12 also shows the preservation of total enthalpy, which

is important in predicting heat flux accurately at the wall.

5.2.2. Quirk’s test-I (odd–even decoupling)

The description of this test case is prescribed in Section 2.1. Roe�s FDS amplifies the initial perturbation

and completely destroys the normal shock structure as shown in Fig. 1. Figure 13 shows density contour

after 3400 iterations. The presented schemes, both RoeM 1 and RoeM 2, clearly capture the shock and

initial perturbations do not grow with time.

Fig. 12. Supersonic (M1 ¼ 8:0) half-cylinder problem: pressure contour and shock profiles along the stagnation streamline.
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5.2.3. Quirk’s test-II (odd–even decoupling)

In this test case, the Quirk�s test-I is initially computed using the original Roe�s FDS until 550 iterations,

and then the solution possessing the shock instability is used as the initial condition for the computation

with RoeM 2. Figure 14 shows the evolution of the moving shock at each time. Initial shock profile is being

perturbed with Roe�s FDS, and it becomes almost impossible to figure out the original shape of the normal
shock at 550-iteration step. However, RoeM 2 scheme quickly damps out spurious oscillations and recovers
the original shock profile.

5.2.4. The kinked Mach stem

It is well known that Godunov-type schemes show a kinked Mach stem in the double Mach reflection
problem. This test is defined by a 30� ramp and a moving shock at Ms ¼ 5:5. In Section 2.2, it was examined
that Roe�s FDS suffers from the kinked Mach stem, and that the instability increases as the mesh is refined.

Gressier et al. [13] show that even AUSM+ scheme on a refined mesh can suffer from the kinked Mach

stem. Density contours of AUSM+, RoeM 1, and RoeM 2 on a 400� 400 mesh are shown in Fig. 15. The

results are obtained with first-order spatial accuracy. The kink develops in AUSM+ scheme and RoeM 1 at

the principal Mach stem, while RoeM 2 does not show such behavior.

5.2.5. Supersonic corner problem

As a final test case concerning the shock instability, we consider the diffraction of a supersonic moving

shock with Ms ¼ 5:09, around a 90� corner. Quirk [6] shows the complexity of this flow using grid re-

finement to resolve the fine details. It is shown that Roe�s FDS produces the shock instability along a planar
shock wave that is aligned with the grid. Roe�s FDS with an entropy fix, HLLE, RoeM 1, and RoeM 2 are

applied to calculate this problem. At the 90� corner where the shock is diffracted, Roe�s FDS without an

entropy fix produces unphysical negative pressure. Many methods are available to cure an expansion shock

and instability in the expansion region with an entropy fix. In the present study, the wave speeds of HLLE

and HLLEM are used.

k�
3 ¼ maxðk3;Ujþ1 þ cjþ1Þ; k�

4 ¼ minðk4;Uj � cjÞ; ð36aÞ

k3 ¼ ÛU þ ĉc; k4 ¼ ÛU � ĉc: ð36bÞ

All calculations are made with second-order spatial accuracy using van Albada limiter. The mesh size is

400� 400, and the CFL number is 0.4. Figure 16 shows the density contour of each scheme. Roe�s FDS

Fig. 13. Quirk�s test: odd–even grid decoupling problem with a moving shock of Ms ¼ 6:0.
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Fig. 14. Quirk�s test: computations from the solution of Roe�s FDS.
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with the entropy fix to non-linear waves does not experience any particular difficulty in the expansion

region, but still shows the shock instability in the primary shock region. HLLE, which considers only non-

linear waves, is free from the shock instability and shows good shock-capturing capability as expected, but

the flow around the expansion region is somewhat diffused due to numerical dissipation. On the other hand,

both RoeM 1 and RoeM 2 show the robustness and accuracy in the expansion region and good shock-

capturing ability. There is no symptom of anomaly in the straight stem of the primary shock.

5.3. Viscous flows

5.3.1. Boundary layer over a flat plate

The free stream conditions for laminar boundary layer over a flat plate are as follows:

• Calorically perfect gas.
• M1 ¼ 0:2.
• Re ¼ 1:0� 105.

The conditions for the computation are as follows:

• Spatial discretization:

Roe�s FDS, RoeM 1, and RoeM 2. Third-order MUSCL without limiter (j ¼ 1
3
).

The number of grid point ¼ 81� 65.

• Boundary condition:

Adiabatic wall condition.
Figure 17 shows the comparison of the velocity profiles of each scheme with the Blasius solution. Like

Roe�s FDS, RoeM 1, and RoeM 2 produce an excellent agreement with the u and v profiles of the Blasius

solution.

Fig. 15. Density contours of double Mach reflection using AUSM+, RoeM 2 with first-order spatial accuracy.

S. Kim et al. / Journal of Computational Physics 185 (2003) 342–374 365



5.3.2. Shock wave/laminar boundary layer interaction

This test case is a two-dimensional laminar flow, characterized by an oblique shock with an incident

angle of 32.585� upon a flat plate causing boundary layer to separate and reattach around the shock-im-

pinging region. The complicated phenomenon provides a good test of validating a scheme before a tur-

bulence model is implemented. The free stream conditions are as follows:

• Calorically perfect gas.

• M1 ¼ 2:0.

Fig. 16. Density contours of supersonic corner problem on 400� 400 mesh using the Roe�s FDS with an entropy fix, HLLE, RoeM 1

and RoeM 2.
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• Re ¼ 2:96� 105.

• Pr ¼ 0:72.
• himpinging shock angle ¼ 32:585�.

The conditions for the computation are as follows:

• Spatial discretization:

Roe�s FDS, RoeM 1, RoeM 2 and HLLE. Second-order accuracy with van Leer�s limiter.

The number of grid point ¼ 105� 65.

• Boundary condition:
Adiabatic wall condition.

Figure 18 shows the pressure contour of each scheme. Impinging shock and re-circulation region where

flow is separated and reattached are well resolved. No spurious oscillation near the oblique shock and wall

is observed. In Fig. 19, skin friction coefficients of RoeM 1 and RoeM 2 are compared with the result of

Roe�s FDS and the experimental data of [21]. It shows that skin friction coefficients of all the proposed

schemes are in very good agreement with that of Roe�s FDS and experimental data, indicating the capa-

bility of the proposed schemes to compute viscous flows involving shock waves and separation. The error

histories of the proposed schemes show similar convergent rates to that of Roe�s FDS.

5.3.3. Transonic flows around RAE2822 airfoil

This test case is concerned with viscous turbulent flows around the RAE2822 airfoil at the transonic

regime. The free stream conditions of the first case are as follows:

Fig. 17. Boundary layer calculation on a flat plate at M1 ¼ 0:2 and Re ¼ 104.

Fig. 18. Pressure contours of shock–boundary interaction problem at M1 ¼ 2:0 and Re ¼ 2:96� 105.
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• Calorically perfect gas.

• M1 ¼ 0:73.
• Re ¼ 6:5� 106.
• Pr ¼ 0:72.
• a ¼ 2:19�.

The conditions for the computation are as follows:

• Spatial discretization:

Roe FDS, RoeM 1, and RoeM 2. Second-order accuracy with van Leer�s limiter.

The number of grid point ¼ 241� 48, C-type mesh.

• Boundary condition:

Non-slip adiabatic wall condition.
The condition corresponds to the experimental Case 9 in [22]. The Baldwin–Lomax turbulence model is

used. The flow is assumed to be fully turbulent without transition near the leading edge. Figure 20 shows

Cp distribution and error history. Differences between the proposed schemes and Roe�s FDS are hardly

noticeable, and the result shows a fairly accurate Cp distribution compared with experimental data.

Fig. 19. Skin friction coefficients and error histories of shock–boundary interaction problem at M1 ¼ 2:0 and Re ¼ 2:96� 105.

Fig. 20. Cp distribution and error history around RAE2822 airfoil at M1 ¼ 0:73, a ¼ 2:79� and Re ¼ 6:5� 106 with the Baldwin–

Lomax turbulence model.

368 S. Kim et al. / Journal of Computational Physics 185 (2003) 342–374



The second case has the free stream conditions as follows:

• Calorically perfect gas.

• M1 ¼ 0:75.
• Re ¼ 6:2� 106.

• Pr ¼ 0:72.
• a ¼ 2:81�.

The conditions for the computation are as follows:

• Spatial discretization:

Roe FDS, RoeM 1, and RoeM 2. Second-order accuracy with van Leer�s limiter.

The number of grid point ¼ 241� 65, O-type mesh.

• Boundary condition:
Non-slip adiabatic wall condition.

This condition corresponds to the experimental Case 10 in [22]. The two-equation kx-SST turbulence

model by Menter [23] is adopted. Figure 21 shows the comparison of Cp distribution and error history with

Roe�s FDS and experimental data, which validates again the performance of RoeM 1 and RoeM 2. As can

be seen from the computed results, the present schemes work well with popular turbulence models.

5.3.4. Hypersonic flow around a blunt body

A hypersonic blunt body problem is chosen in order to examine the effects of a strong shock discon-

tinuity and large gradients in boundary layer. In computing this problem, the primary concern is the ac-

curate prediction of surface heating rate at the wall. The free stream conditions are as follows:

• Calorically perfect gas.
• M1 ¼ 16:34.
• p1 ¼ 82:95 ðN=m

2Þ.
• q1 ¼ 5:557� 10�3 ðkg=m3Þ.
• l1 ¼ 3:369� 10�6 ðkg=ms2Þ.
• T1 ¼ 52K.

• Twall ¼ 294:4K.
• Re ¼ 1:4972� 105.

• Pr ¼ 0:72.

Fig. 21. Cp distribution and error history around RAE2822 airfoil at M1 ¼ 0:75, a ¼ 2:81� and Re ¼ 6:2� 106 with the kx-SST
turbulence model.

S. Kim et al. / Journal of Computational Physics 185 (2003) 342–374 369



The conditions for the computation are as follows:

• Spatial discretization:

RoeM 1 and RoeM 2. Third-order MUSCL with minmod limiter (b ¼ 1; j ¼ 1
3
).

The number of grid point ¼ 65� 113.

• Boundary condition:

Constant temperature wall.

Roe�s FDS is not used for this test case due to the carbuncle phenomenon, and the computed results of

RoeM 1 an RoeM 2 are compared with the experimental data [24]. Figure 22 shows shock profiles of each
scheme along the stagnation line. The left figures are the results along the stagnation line and the right

shows the results inside boundary layer. Pressure and temperature profiles maintain monotonicity across

the shock. In boundary layer, no spurious oscillation of flow properties is observed. The number of grid

point in boundary layer is sufficient to resolve temperature change accurately, i.e., heat flux. Figure 23

shows surface heating rates and skin friction coefficients of the proposed schemes, indicating a very good

agreement with experimental data.

5.3.5. 3-D viscous calculation around ONERA M6 wing

As a final test case, the flow over the ONERAM6 wing with a sweepback angle of 30� and aspect ratio of
3.18 is computed. RoeM 1 and RoeM 2 schemes are easily extended to 3-dimensional flows. Convection

terms in the z-direction are included as follows:

RoeM 1

Fjþð1=2Þ ¼
b1 � Fj � b2 � Fjþ1

b1 � b2
þ b1 � b2

b1 � b2
DQ� � b1 � b2

b1 � b2
� 1

1þ jM̂M j
BDQ; ð37aÞ

Fig. 22. Shock profiles along the stagnation line.
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DQ� ¼ D

1

qu
qv
qw
qH

0
BBBB@

1
CCCCA; BDQ ¼ Dq

�
� f

Dp
ĉc2

	 1

ûu
v̂v
ŵw
ĤH

0
BBBB@

1
CCCCAþ q̂q

0

Du � nxDU
Dv � nyDU
Dw � nzDU

DH

0
BBBB@

1
CCCCA; ð37bÞ

b1 ¼ maxð0; ÛU þ ĉc;Ujþ1 þ ĉcÞ; b2 ¼ minð0; ÛU � ĉc;Uj � ĉcÞ: ð37cÞ

RoeM 2

Fjþð1=2Þ ¼
b1 � Fj � b2 � Fjþ1

b1 � b2
þ b1 � b2

b1 � b2
DQ� � g

b1 � b2
b1 � b2

� 1

1þ jM̂M j
BDQ: ð37dÞ

f ¼ 1 ûu2 þ v̂v2 ¼ 0;
jM̂M jh elsewhere:

(
ð37eÞ

h ¼1�min Pi;jþð1=2Þ;k; Pi�ð1=2Þ;j;k; Piþð1=2Þ;j;k; Pi�ð1=2Þ;jþ1;k; Piþð1=2Þ;jþ1;k; Pi;j;k�ð1=2Þ;
�
Pi;j;kþð1=2Þ; Pi;jþ1;k�ð1=2Þ; Pi;jþ1;kþð1=2Þ

�
;

ð37fÞ

Pi;jþð1=2Þ;k ¼ min
pi;j;k

pi;jþ1;k
;
pi;jþ1;k

pi;j;k

� 	
: ð37gÞ

g ¼ jM j
1�min

Pj
Pjþ1

;
Pjþ1
Pj

� �
; M 6¼ 0;

1; M ¼ 0:

8<
: ð37hÞ

Fig. 23. Surface heating rates over a half-cylinder at M1 ¼ 16:32 and Re ¼ 1:4972� 105 with constant wall temperature

Twall ¼ 294:4K.
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The free stream conditions are as follows:

• Calorically perfect gas.

• M1 ¼ 0:84.
• Re ¼ 1:46� 107.

• Pr ¼ 0:72.
• a ¼ 3:06�.
The conditions for the computation are as follows:

• Spatial discretization:

Fig. 24. Cp distribution and error history over ONERA M6 wing at M1 ¼ 0:84, a ¼ 3:06� and Re ¼ 1:46� 107 with the kx-SST
turbulence model.
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Roe FDS, RoeM 1, and RoeM 2. Third-order accuracy with Koren limiter. kx-SST turbulence model.

The number of grid point ¼ 143� 33� 65 O–O type.

• Boundary condition:

Non-slip adiabatic wall condition.

Computed results by RoeM 1 and RoeM 2 are compared with that by Roe�s FDS and the experiment

[25]. In Fig. 24, error history and surface Cp distributions at four spanwise positions of 44%s, 65%s, 80%s,

and 90%s are compared with each other. The computed results show a good agreement with Roe�s FDS and
experimental one.

Finally, the computational efficiency of the proposed schemes is presented. Due to the calculations of

control functions f and g, the proposed schemes take a relatively more computing time than Roe�s FDS.
Table 1 shows the relative computational cost. Considering the various desirable properties and robustness,

however, the computational burden is clearly compensated.

6. Concluding remarks

Starting from the original Roe�s FDS scheme, newly formulated shock-stable Roe-based schemes, Roe

with Mach number-based function schemes (RoeM 1 and RoeM 2), are developed. In order to control the

feeding rate of pressure fluctuation in the numerical mass flux, which is considered to be the source of the

shock instability, a control function f is introduced. The function f has the role of reducing the rate at which

pressure perturbation feeds density field. Another function g in RoeM 2 has the role of increasing the

damping rate of density perturbation and controlling the pressure perturbation simultaneously. Improved

wave speed is introduced to remedy expansion shock and numerical instability in the expansion region,
while the capability to capture contact discontinuity exactly is still retained. For the accurate prediction of

surface heat transfer rate, RoeM schemes are also designed to preserve total enthalpy. Although control

functions f and g are very simple, extensive computational tests performed in the present paper confirm that

the proposed schemes are able to solve a wide range of aerodynamic problems, accurately and without the

shock instability, especially where strong physical discontinuities or gradients of flow properties exist. The

numerical results with RoeM 1 and RoeM 2 shows that the shock instability is strongly dependent on

pressure contribution to the numerical mass flux, and the shock stability can be compatible with the exact

capture of the contact discontinuity.
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